
Package: incase (via r-universe)
November 7, 2024

Type Package

Title Pipe-Friendly Vector Replacement with Case Statements

Version 0.3.2.9000

Description Offers a pipe-friendly alternative to the 'dplyr'
functions case_when() and if_else(), as well as a number of
user-friendly simplifications for common use cases. These
functions accept a vector as an optional first argument,
allowing conditional statements to be built using the
'magrittr' dot operator. The functions also coerce all outputs
to the same type, meaning you no longer have to worry about
using specific typed variants of NA or explicitly declaring
integer outputs, and evaluate outputs somewhat lazily, so you
don't waste time on long operations that won't be used.

License MIT + file LICENSE

URL https://pkg.rossellhayes.com/incase/,

https://github.com/rossellhayes/incase

BugReports https://github.com/rossellhayes/incase/issues

Imports backports, cli, magrittr, plu, rlang

Suggests dplyr, testthat (>= 3.0.0), tibble

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://rossellhayes.r-universe.dev

RemoteUrl https://github.com/rossellhayes/incase

RemoteRef HEAD

RemoteSha 3cbec4219c1a25a269f5186224cff622154dd4f4

1

https://pkg.rossellhayes.com/incase/
https://github.com/rossellhayes/incase
https://github.com/rossellhayes/incase/issues

2 fn_case

Contents
fn_case . 2
grep_case . 5
if_case . 6
in_case . 8
in_case_fct . 10
in_case_list . 12
switch_case . 13

Index 16

fn_case Case statements applying a function to all inputs

Description

Case statements applying a function to all inputs

Usage

fn_case(x, fn, ..., preserve = FALSE, default = NA)

Arguments

x A vector

fn A function to apply to the left-hand side of each formula in ...

Either a quoted or unquoted function name, an anonymous function, or a purrr-
style formula.
The function should take two inputs, the first being x and the second being the
left-hand side of the formula. The function should return a logical vector, either
of length 1 or the same length as x.

... <dynamic-dots> A sequence of two-sided formulas or named arguments.

• Formulas: Elements of x that return TRUE when passed to fn with the left
hand side (LHS) of each formula will be replaced with the value in the right
hand side (RHS). The LHS must evaluate to a logical vector when passed
to fn with x. The RHS must be of length 1 or the same length as all other
RHS.

• Named arguments: named arguments are passed as additional arguments
to the function fn.

preserve If TRUE, unmatched elements of x will be returned unmodified. (The elements
may have their type coerced to be compatible with replacement values.) If
FALSE, unmatched elements of x will be replaced with default. Defaults to
FALSE.

default If preserve is FALSE, a value to replace unmatched elements of x. Defaults to
NA.

fn_case 3

Value

A vector of length 1 or n, matching the length of the logical input or output vectors. Inconsistent
lengths will generate an error.

See Also

fn_case_fct() to return a factor and fn_case_list() to return a list

fn_switch_case(), which applies a function to each formula’s LHS, but not x

switch_case(), a simpler alternative for exact matching

grep_case(), a simpler alternative for regex pattern matching

in_case(), a pipeable alternative to dplyr::case_when()

Examples

Replicate switch_case()
parties <- sample(c("d", "r", "i", "g", "l"), 20, replace = TRUE)

fn_case(
parties,
fn = `%in%`,
"d" ~ "Democrat",
"r" ~ "Republican",
"i" ~ "Independent",
"g" ~ "Green",
"l" ~ "Libertarian"

)

Replicate grep_case()
countries <- c(

"France", "Ostdeutschland", "Westdeutschland", "Nederland",
"Belgie (Vlaanderen)", "Belgique (Wallonie)", "Luxembourg", "Italia"

)

fn_case(
countries,
fn = function(x, pattern, ...) {grepl(pattern, x, ...)},
"Deutschland" ~ "Germany",
"Belgi(qu)?e" ~ "Belgium",
"Nederland" ~ "Netherlands",
"Italia" ~ "Italy",
preserve = TRUE,
ignore.case = TRUE

)

fn_case(
countries,
fn = ~ grepl(.y, .x),
"Deutschland" ~ "Germany",
"Belgi(qu)?e" ~ "Belgium",
"Nederland" ~ "Netherlands",

4 fn_case

"Italia" ~ "Italy",
preserve = TRUE,
ignore.case = TRUE

)

Recode values in a range
time <- runif(10, 1, 12)
hours <- time %/% 1
minutes <- time %% 1 * 60

hours <- hours %>%
if_case(minutes > 32.5, (. + 1) %% 12, .) %>%
switch_case(0 ~ 12, preserve = TRUE)

minutes %>%
fn_case(

fn = ~ abs(.x - .y) <= 2.5,
0 ~ "o'clock",
60 ~ "o'clock",
30 ~ "half past",
15 ~ "quarter past",
45 ~ "quarter to",
5 ~ "five past",
10 ~ "ten past",
20 ~ "twenty past",
25 ~ "twenty-five past",
55 ~ "five to",
50 ~ "ten to",
40 ~ "twenty to",
35 ~ "twenty-five to"

) %>%
switch_case(

"o'clock" ~ paste(hours, .),
default = paste(., hours)

)

Replicate vctrs::vec_ptype_abbr() (used for tibble column labels)
Based on a contribution by Patrice Kiener
in_herits <- function(x) {

fn_case(
x,
fn = inherits,
"factor" ~ "fct",
"character" ~ "chr",
"numeric" ~ "dbl",
"integer" ~ "int",
"logical" ~ "lgl",
"complex" ~ "cpl",
"raw" ~ "raw",
"matrix" ~ "mat",
"array" ~ "arr",
"data.frame" ~ "df",
"list" ~ "lst",

grep_case 5

"function" ~ "fn",
default = class(x)[[1]]

)
}

in_herits(1:3)
in_herits(letters[1:3])
in_herits(fn_case)

grep_case Switch-style recoding of values with string pattern matching

Description

Switch-style recoding of values with string pattern matching

Usage

grep_case(x, ..., preserve = FALSE, default = NA)

Arguments

x A vector
... <dynamic-dots> A sequence of two-sided formulas or named arguments.

• Formulas: Elements of x that match the regex pattern on the left hand side
(LHS) of formulas will be replaced with the value in the right hand side
(RHS). The LHS must evaluate to a character string. The RHS must be of
length one. NULL inputs are ignored.

• Named arguments: named arguments are passed to grepl().
preserve If TRUE, unmatched elements of x will be returned unmodified. (The elements

may have their type coerced to be compatible with replacement values.) If
FALSE, unmatched elements of x will be replaced with default. Defaults to
FALSE.

default If preserve is FALSE, a value to replace unmatched elements of x. Defaults to
NA.

Value

A vector of the same length as x.

See Also

grep_case_fct() to return a factor and grep_case_list() to return a list

fn_case(), to apply a function other than grepl() to each case

switch_case() to recode values with exact matching

in_case(), a pipeable alternative to dplyr::case_when()

switch() and grepl(), which inspired this function

6 if_case

Examples

words <- c("caterpillar", "dogwood", "catastrophe", "dogma")

grep_case(
words,
"cat" ~ "feline",
"dog" ~ "canine"

)

caps_words <- c("caterpillar", "dogwood", "Catastrophe", "DOGMA")

grep_case(
caps_words,
"cat" ~ "feline",
"dog" ~ "canine",
ignore.case = TRUE

)

countries <- c(
"France", "Ostdeutschland", "Westdeutschland", "Nederland",
"Belgie (Vlaanderen)", "Belgique (Wallonie)", "Luxembourg", "Italia"

)

grep_case(
countries,
"Deutschland" ~ "Germany",
"Belgi(qu)?e" ~ "Belgium",
"Nederland" ~ "Netherlands",
"Italia" ~ "Italy",
preserve = TRUE,
ignore.case = TRUE

)

if_case Pipe-friendly vectorized if

Description

Compared to dplyr::if_else(), this function is easier to use with a pipe. A vector piped into
this function will be quietly ignored. This allows magrittr dots to be used in arguments without
requiring workarounds like wrapping the function in braces.

Usage

if_case(condition, true, false, missing = NA, ...)

if_case 7

Arguments

condition Logical vector

true, false, missing
Values to use for TRUE, FALSE, and NA values of condition. They must be either
the same length as condition, or length 1.

... Values passed to ... produce an error. This facilitates the quiet ignoring of a
piped vector.

Details

This function is also less strict than dplyr::if_else(). If true, false, and missing are different
types, they are silently coerced to a common type.

Value

Where condition is TRUE, the matching value from true; where it’s FALSE, the matching value
from false; and where it’s NA, the matching value from missing.

See Also

in_case(), a pipeable alternative to dplyr::case_when()

switch_case(), a reimplementation of switch()

dplyr::if_else(), from which this function is derived

Examples

x <- c(1, 2, 5, NA)

if_case() produces the same output as dplyr::if_else()
if_case(x > 3, "high", "low", "missing")
dplyr::if_else(x > 3, "high", "low", "missing")

if_case() does not throw an error if arguments are not of the same type
if_case(x > 3, "high", "low", NA)
try(dplyr::if_else(x > 3, "high", "low", NA))

if_case() can accept a piped input without an error or requiring braces
x %>% if_case(. > 3, "high", "low", "missing")
try(x %>% dplyr::if_else(. > 3, "high", "low", "missing"))
x %>% {dplyr::if_else(. > 3, "high", "low", "missing")}

You can also pipe a conditional test like dplyr::if_else()
{x > 3} %>% if_case("high", "low", "missing")
{x > 3} %>% dplyr::if_else("high", "low", "missing")

8 in_case

in_case A pipe-friendly general vectorized if

Description

This function allows you to vectorize multiple if_else() statements. If no cases match, NA is re-
turned. This function derived from dplyr::case_when(). Unlike dplyr::case_when(), in_case()
supports piping elegantly and attempts to handle inconsistent types (see examples).

Usage

in_case(..., preserve = FALSE, default = NA)

Arguments

... <dynamic-dots> A sequence of two-sided formulas. The left hand side (LHS)
determines which values match this case. The right hand side (RHS) provides
the replacement value.
The LHS must evaluate to a logical vector.
Both LHS and RHS may have the same length of either 1 or n. The value of n
must be consistent across all cases. The case of n == 0 is treated as a variant of
n != 1.
NULL inputs are ignored.

preserve If TRUE, unmatched elements of the input will be returned unmodified. (The
elements may have their type coerced to be compatible with replacement val-
ues.) If FALSE, unmatched elements of the input will be replaced with default.
Defaults to FALSE.

default If preserve is FALSE, a value to replace unmatched elements of the input. De-
faults to NA.

Value

A vector of length 1 or n, matching the length of the logical input or output vectors. Inconsistent
lengths will generate an error.

See Also

in_case_fct() to return a factor and in_case_list() to return a list

switch_case() a simpler alternative for when each case involves == or %in%

fn_case(), a simpler alternative for when each case uses the same function

if_case(), a pipeable alternative to dplyr::if_else()

dplyr::case_when(), from which this function is derived

in_case 9

Examples

Non-piped statements are handled the same as dplyr::case_when()
x <- 1:30
in_case(

x %% 15 == 0 ~ "fizz buzz",
x %% 3 == 0 ~ "fizz",
x %% 5 == 0 ~ "buzz",
TRUE ~ x

)

A vector can be directly piped into in_case() without error
1:30 %>%

in_case(
. %% 15 == 0 ~ "fizz buzz",
. %% 3 == 0 ~ "fizz",
. %% 5 == 0 ~ "buzz",
TRUE ~ .

)

in_case() silently converts types
1:30 %>%

in_case(
. %% 15 == 0 ~ 35,
. %% 3 == 0 ~ 5,
. %% 5 == 0 ~ 7,
TRUE ~ NA

)

x <- 1:30
try(

dplyr::case_when(
x %% 15 == 0 ~ 35,
x %% 3 == 0 ~ 5,
x %% 5 == 0 ~ 7,
TRUE ~ NA

)
)

default and preserve make it easier to handle unmatched values
1:30 %>%

in_case(
. %% 15 == 0 ~ "fizz buzz",
. %% 3 == 0 ~ "fizz",
. %% 5 == 0 ~ "buzz",
default = "pass"

)

1:30 %>%
in_case(

. %% 15 == 0 ~ "fizz buzz",

. %% 3 == 0 ~ "fizz",

. %% 5 == 0 ~ "buzz",

10 in_case_fct

preserve = TRUE
)

in_case_fct Case statements returning a factor

Description

These functions are equivalent to in_case(), switch_case(), grep_case(), fn_case(), and
fn_switch_case() but return factors with their levels determined by the order of their case state-
ments.

Usage

in_case_fct(..., preserve = FALSE, default = NA, ordered = FALSE)

switch_case_fct(x, ..., preserve = FALSE, default = NA, ordered = FALSE)

grep_case_fct(x, ..., preserve = FALSE, default = NA, ordered = FALSE)

fn_case_fct(x, fn, ..., preserve = FALSE, default = NA, ordered = FALSE)

fn_switch_case_fct(x, fn, ..., preserve = FALSE, default = NA, ordered = FALSE)

Arguments

... <dynamic-dots> A sequence of two-sided formulas or named arguments.

• Formulas: Elements of x that return TRUE when passed to fn with the left
hand side (LHS) of each formula will be replaced with the value in the right
hand side (RHS). The LHS must evaluate to a logical vector when passed
to fn with x. The RHS must be of length 1 or the same length as all other
RHS.

• Named arguments: named arguments are passed as additional arguments
to the function fn.

preserve If TRUE, unmatched elements of x will be returned unmodified. (The elements
may have their type coerced to be compatible with replacement values.) If
FALSE, unmatched elements of x will be replaced with default. Defaults to
FALSE.

default If preserve is FALSE, a value to replace unmatched elements of x. Defaults to
NA.

ordered A logical. If TRUE, returns an ordered factor. If FALSE, returns an unordered
factor.

x A vector

in_case_fct 11

fn A function to apply to the left-hand side of each formula in ...

Either a quoted or unquoted function name, an anonymous function, or a purrr-
style formula.
The function should take two inputs, the first being x and the second being the
left-hand side of the formula. The function should return a logical vector, either
of length 1 or the same length as x.

Value

A factor vector of length 1 or n, matching the length of the logical input or output vectors. Levels
are determined by the order of inputs to Inconsistent lengths will generate an error.

See Also

in_case(), switch_case(), grep_case(), fn_case(), and fn_case_fct() on which these func-
tions are based.

Examples

1:10 %>%
in_case_fct(
. %% 2 == 0 ~ "even",
. %% 2 == 1 ~ "odd"

)

switch_case_fct(
c("a", "b", "c"),
"c" ~ "cantaloupe",
"b" ~ "banana",
"a" ~ "apple"

)

switch_case_fct(
c("a", "b", "c", "d"),
"c" ~ "cantaloupe",
"b" ~ "banana",
"a" ~ "apple"

)

switch_case_fct(
c("a", "b", "c", "d"),
"c" ~ "cantaloupe",
"b" ~ "banana",
"a" ~ "apple",
preserve = TRUE

)

grep_case_fct(
c("caterpillar", "dogwood", "catastrophe", "dogma"),
"cat" ~ "feline",
"dog" ~ "canine"

)

12 in_case_list

fn_case_fct(
c("a", "b", "c"),
`%in%`,
"c" ~ "cantaloupe",
"b" ~ "banana",
"a" ~ "apple"

)

in_case_list Case statements returning a list

Description

These functions are equivalent to in_case(), switch_case(), grep_case(), fn_case(), and
fn_switch_case() but return lists.

Usage

in_case_list(..., preserve = FALSE, default = NA)

switch_case_list(x, ..., preserve = FALSE, default = NA)

grep_case_list(x, ..., preserve = FALSE, default = NA)

fn_case_list(x, fn, ..., preserve = FALSE, default = NA)

fn_switch_case_list(x, fn, ..., preserve = FALSE, default = NA)

Arguments

... <dynamic-dots> A sequence of two-sided formulas or named arguments.

• Formulas: Elements of x that return TRUE when passed to fn with the left
hand side (LHS) of each formula will be replaced with the value in the right
hand side (RHS). The LHS must evaluate to a logical vector when passed
to fn with x. The RHS must be of length 1 or the same length as all other
RHS.

• Named arguments: named arguments are passed as additional arguments
to the function fn.

preserve If TRUE, unmatched elements of x will be returned unmodified. (The elements
may have their type coerced to be compatible with replacement values.) If
FALSE, unmatched elements of x will be replaced with default. Defaults to
FALSE.

default If preserve is FALSE, a value to replace unmatched elements of x. Defaults to
NA.

x A vector

switch_case 13

fn A function to apply to the left-hand side of each formula in ...

Either a quoted or unquoted function name, an anonymous function, or a purrr-
style formula.

The function should take two inputs, the first being x and the second being the
left-hand side of the formula. The function should return a logical vector, either
of length 1 or the same length as x.

Details

This can be useful when returning a non-atomic value and/or when you want to create a list column
inside a tibble.

Value

A list of length 1 or n, matching the length of the logical input vector.

See Also

in_case(), switch_case(), grep_case(), fn_case(), and fn_case_fct() on which these func-
tions are based.

Examples

1:3 %>%
in_case_list(
. < 2 ~ mtcars,
default = letters

)

switch_case Switch-style recoding of values

Description

Switch-style recoding of values

Usage

switch_case(x, ..., preserve = FALSE, default = NA)

fn_switch_case(x, fn, ..., preserve = FALSE, default = NA)

14 switch_case

Arguments

x A vector

... <dynamic-dots> A sequence of two-sided formulas or named arguments.

• Formulas: Elements of x that match the left hand side (LHS) of formulas
will be replaced with the value in the right hand side (RHS). The LHS must
evaluate to an atomic vector. The RHS must be of length one. NULL inputs
are ignored.

• Named arguments: for fn_switch_case(), named arguments are passed
to the function fn. For switch_case(), named arguments will raise an
error.

preserve If TRUE, unmatched elements of x will be returned unmodified. (The elements
may have their type coerced to be compatible with replacement values.) If
FALSE, unmatched elements of x will be replaced with default. Defaults to
FALSE.

default If preserve is FALSE, a value to replace unmatched elements of x. Defaults to
NA.

fn A function to apply to the left-hand side of each formula in ...

Value

A vector of the same length as x.

See Also

switch_case_fct() and fn_switch_case_fct() to return a factor and switch_case_list() and
fn_switch_case_list() to return a list

grep_case() to recode values with string pattern matching

fn_case(), which applies a function to both x and each formula’s LHS

in_case(), a pipeable alternative to dplyr::case_when()

switch() and %in%, which inspired this function

Examples

parties <- sample(c("d", "r", "i", "g", "l"), 20, replace = TRUE)

switch_case(
parties,
"d" ~ "Democrat",
"r" ~ "Republican",
"i" ~ "Independent",
"g" ~ "Green",
"l" ~ "Libertarian"

)

parties %>%
switch_case(
"d" ~ "Democrat",

switch_case 15

"r" ~ "Republican",
"i" ~ "Independent",
"g" ~ "Green",
"l" ~ "Libertarian"

)

parties %>%
switch_case(

"d" ~ "Democrat",
"r" ~ "Republican",
c("i", "g", "l") ~ "Other"

)

parties %>%
switch_case(

"d" ~ "Democrat",
"r" ~ "Republican",
default = "Other"

)

parties %>%
switch_case(

"d" ~ "Democrat",
"r" ~ "Republican",
preserve = FALSE

)

parties %>%
switch_case(

"d" ~ "Democrat",
"r" ~ "Republican",
preserve = TRUE

)

data <- c(1, 4, 8, 12, 999, 6, 2, 888, 4, 6, 777)

fn_switch_case(
data,
function(x) paste(rep(x, 3), collapse = ""),
7 ~ "Not asked",
8 ~ "Refused",
9 ~ "Missing",
preserve = TRUE

)

Index

==, 8
%in%, 8, 14

atomic, 13

dplyr::case_when(), 3, 5, 7, 8, 14
dplyr::if_else(), 6–8

factors, 10
FALSE, 10
fn_case, 2
fn_case(), 5, 8, 10–14
fn_case_fct (in_case_fct), 10
fn_case_fct(), 3, 11, 13
fn_case_list (in_case_list), 12
fn_case_list(), 3
fn_switch_case (switch_case), 13
fn_switch_case(), 3, 10, 12
fn_switch_case_fct (in_case_fct), 10
fn_switch_case_fct(), 14
fn_switch_case_list (in_case_list), 12
fn_switch_case_list(), 14
function, 2, 11, 13

grep_case, 5
grep_case(), 3, 10–14
grep_case_fct (in_case_fct), 10
grep_case_fct(), 5
grep_case_list (in_case_list), 12
grep_case_list(), 5
grepl(), 5

if_case, 6
if_case(), 8
in_case, 8
in_case(), 3, 5, 7, 10–14
in_case_fct, 10
in_case_fct(), 8
in_case_list, 12
in_case_list(), 8

lists, 12

magrittr, 6

ordered, 10

purrr-style formula, 2, 11, 13

regex, 3, 5

switch(), 5, 7, 14
switch_case, 13
switch_case(), 3, 5, 7, 8, 10–13
switch_case_fct (in_case_fct), 10
switch_case_fct(), 14
switch_case_list (in_case_list), 12
switch_case_list(), 14

tibble, 13
TRUE, 10

16

	fn_case
	grep_case
	if_case
	in_case
	in_case_fct
	in_case_list
	switch_case
	Index

